HSC Extension 1 Mathematics Exam Booklet:

Circle Geometry

Name:

Medium

1.

Two circles, C_{1} and C_{2}, intersect at point A and B . Passes through the center O of circle C_{2}. The point P lies on circle C_{2} so that the line PAT is target to circle C_{1} and point A . Let $\angle \mathrm{APB}=\theta$.
Copy or trace the diagram into your writing booklet.
i. Find $\angle A O B$ in terms of θ. Give a reason for your answer.

Circle Geometry

Name:
ii. \quad Explain why $\angle \mathrm{TAB}=2 \theta$.
iii. Deduce that $\mathrm{PA}=\mathrm{BA}$.

Circle Geometry

Name:

2.

In the diagram the point, A, B and C lie on the circle and CBproduce meets and tangent from A at the point T. The bisector of the angle ATC intersects $A B$ and $A C$ at X and Y respectively. Let $\angle \mathrm{TAB}=\beta$.
Copy and trace the diagram into your writing booklet.
i. \quad Explain why $\angle \mathrm{ACB}=\beta$.
ii. Hence prove that triangle AXY is isosceles.

Circle Geometry

Name:

3.

The line AT is the tangent to the circle at A, and BT is a screen meeting the circle at B and C .
Given that $\mathrm{AT}=12, \mathrm{BC}=7$ and $\mathrm{CT}=\mathrm{x}$, find the value of x .

Circle Geometry

Name:
4.

The point A, B, C and D are placed on a circle of radius r such that $A C$ and $B D$ meet at E. The line $A B$ and $D c$ are produced to meet at F, and $B E C F$ is a cyclic quadrilateral. Copy or trace the diagram into your writing booklet.
i. Find the size of $\angle \mathrm{DBF}$, giving reason for your answer.
ii. Find an expression for the length of AD in terms of r.

Circle Geometry

Name:

5. Two chords of a circle, AB and CD , intersect at E . The perpendicular to AB at A and $C D$ at D intersect at P. The line PE meets $B C$ at Q, as shown in the diagram.

i. Explain why DPAE is a cyclic quadrilateral.

Circle Geometry

Name:
ii. Prove that $\angle \mathrm{APE}=\angle \mathrm{ABC}$.
iii. Deduce that PQ is perpendicular to BC .

Circle Geometry

Name:

6.

The point P, Q and T lies on a circle. The line MN is tangent to the circle at T with M chosen so that QM is perpendicular to MN . The point K on PQ is chosen so that TK is perpendicular to PQ as shown in the diagram.
i. Show that $Q K T M$ is a cyclic quadrilateral.

Circle Geometry

Name:

ii. \quad Show that $\angle \mathrm{KMT}=\angle \mathrm{KQT}$.
iii. Hence, or otherwise, show that MK is parallel to TP.

Circle Geometry

Name:

7.

The diagram shows point A, B, C and D on a circle. The lines $A C$ and $B D$ are perpendicular and intersect at X . The perpendicular to AD through X meets AD at P and $B C$ at Q.
Copy or trace this diagram into your writing booklet.
i. Prove that $\angle \mathrm{QXB}=\angle \mathrm{QBX}$.
ii. Prove that Q bisects BC .

Circle Geometry

Name:

8.

Two circles C_{1} and C_{2} intersect at P and Q as shown in the diagram. The tangent TP to C_{2} at M . The line MP meets C_{1} at L .
Copy or trace the diagram into your writing booklet.
Prove that $\triangle \mathrm{PKL}$ is isosceles.

COACHING

Circle Geometry

Name:
9. In the diagram, ST is tangent to both the circle at A.

The point B and C are on the larger circle, and the line BC is tangent to the smaller circle at D. The line $A B$ intersects the smaller circle at X.

Copy or trace the diagram into your writing booklet.
i. \quad Explain why $\angle \mathrm{AXD}=\angle \mathrm{ABD}+\angle \mathrm{XDB}$.

Circle Geometry

Name:

ii. \quad Explain why $\angle \mathrm{AXD}=\angle \mathrm{TAC}+\angle \mathrm{CAD}$.
iii. Hence show that AD bisects $\angle \mathrm{BAC}$.

Circle Geometry

Name:

10. In the diagram, the vertices of $\triangle \mathrm{ABC}$ lie on the circle with center 0 . The point D lies on $B C$ such that $\triangle A B D$ is isosceles and $\angle A B C=x$.

Copy or trace the diagram into your writing booklet.
i.

Explain why $\angle A O C=2 x$.

Circle Geometry

Name:

ii. Prove that ACDO is a cyclic quadrilateral.
iii. Let M be the midpoint of $A C$ and P the center of the circle through A, C, D and 0 . Show that P, M and O are collinear.

Circle Geometry

Name:

11. AB is a common tangent in two circles which intersect at P and Q as illustrated in the diagram below. XPB and YPA are straight lines. XA and YB intersect at T.

i. Copy or trace the diagram into your writing booklet.

Circle Geometry

Name:

ii. \quad Explain why $\angle \mathrm{SBY}=\angle \mathrm{BPY}$
iii. \quad Prove that $\mathrm{AT}=\mathrm{TB}$.

Circle Geometry

Name:

12. ABCD is a cyclic quadrilateral. MAN is the tangent at A to the circle through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D. CA bisects $\angle D C B$.

Copy or trace the diagram into your writing booklet.
i. \quad Explain why $\angle B A N=\angle A C B$.
ii. Hence, or otherwise show that MAN||DB.

Circle Geometry

Name:
13. In the diagram below, DC is a diameter of the larger circle centered $\mathrm{A} . \mathrm{AC}$ at is a diameter of the smaller circle centered at B.
DE is tangent to the smaller circle at F and $\mathrm{DC}=12$.
Copy the diagram into your answer booklet.
Determine the length of DE.

Circle Geometry

Name:

14.

The circle intersects at A and B. The lines DAC. EBC, KPC and DKE are all straight lines.
i. Copy or trace the diagram into your writing booklet.

Circle Geometry

Name:
ii. Give a reason why $\angle \mathrm{CBA}=\angle \mathrm{CPA}$.
iii. Hence or otherwise, show that PADK is a cyclic quadrilateral.

Circle Geometry

Name:

15.

Two circles C_{1} and C_{2} intersect at A and B . A line through A meets the circle at P and Q respectively. A tangent is drawn from an external point T to touch the circle C_{1} at P. The line TQ intersects C_{2} at R .
i. Given $\angle \mathrm{XPB}=\alpha$, show that $\angle \mathrm{BRQ}=180^{\circ}-\alpha$, giving reasons.
ii. Hence show that PTRB is a cyclic quadrilateral.

Circle Geometry

Name: \qquad

Hard

16. The diagram shows a large semicircle with diameter AB and two smaller semicircles with diameter AC and BC , respectively, where C is appoint on the diameter AB . The point M is the center of the semicircle with diameter AC . The line perpendicular to $A B$ through C meets the largest semicircle at the point D. The points S and T are the intersection of the lines $A D$ and $B D$ with the smaller semicircles. The point X is the intersection of the lines CD and ST .

Copy or trace the diagram into your writing booklet.
i. Explain why CTDS is a rectangle.

Circle Geometry

Name:
ii. Show that $\triangle \mathrm{MXS}$ and $\triangle \mathrm{MXC}$ are congruent.
iii. Show that the line ST is a tangent to the semicircle with diameter AC .

Circle Geometry

Name:

17.

In the diagram above PQ and PR are tangents to the circles SQT and STR respectively, and the points Q, T and R are collinear.
i. \quad Given that $\angle \mathrm{QST}=\alpha$, state a reason why $\angle \mathrm{PQT}=\alpha$.
ii. Prove that PQSR is a cyclic quadrilateral.

Circle Geometry

Name:

18.

The diagram above shows two circles intersection at A and B . The points P, A and Q are collinear, and the chords PM and NQ, when produced, intersect at C. Let $\angle \mathrm{PAB}=\alpha$.
i. \quad Give a reason why $\angle \mathrm{BNQ}=\alpha$.
ii. Prove that the quadrilateral CMBN is cyclic.

Circle Geometry

Name:

19.

In the diagram, C is a circle with exterior point T . From T tangent are drawn to the point A and B on C and a line TC is drawn, meeting the circle at C. The point D is the point on C such that $B D$ is parallel to TC. The line TC cuts the line $A B$ at F and the lines AD at E.
Copy or trace the diagram into your writing booklet.
i. Prove that $\triangle T F A$ is similar to $\triangle T A E$.
ii. Deduce that $\mathrm{TE} \cdot \mathrm{TF}=\mathrm{TB}^{2}$.

Circle Geometry

Name:
iii. Show that $\triangle \mathrm{EBT}$ is similar to $\triangle \mathrm{BFT}$.
iv. Prove that $\triangle \mathrm{DEB}$ is isosceles.

Circle Geometry

Name:

20.

In the diagram, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic, and the points $\mathrm{R}, \mathrm{S}, \mathrm{T}$ are the feet of the perpendicular from D to $B A$ produced, $A C$ and $B C$ respectively.
i. Show that $\angle \mathrm{DSR}=\angle \mathrm{DAR}$.

Circle Geometry

Name:

ii. \quad Show that $\angle \mathrm{DST}=\pi-\angle \mathrm{DCT}$.
iii. Deduce that the points R, S and T are collinear.

Circle Geometry

Name:

21. The vertices of an acute-angles triangle ABC lie on a circle. The perpendiculars from A, B and C meet , BC, AC and AB at D, E and F respectively. These perpendiculars meet at H .
The perpendiculars AD, BE and CF are produces to meet the circle at k, L and M respectively.

i. Prove that $\angle \mathrm{AHE}=\angle \mathrm{DCE}$.
ii. \quad Deduce that $\mathrm{AH}=\mathrm{AL}$.

Circle Geometry

Name:
iii. State a similar result for triangle AMH.
iv. Show that the length of the arc BKC is half the length of the arc MKL.

Circle Geometry

Name:

22.

Two circles intersect at A and B.
The lines LM and PQ pass through B, with L and P on one circle and and on the other circle, as shown in the diagram.
Copy or trace the diagram into your writing booklet.
Show that $\angle \mathrm{LAM}=\angle \mathrm{PAQ}$.

Circle Geometry

Name:

\qquad
23. In the diagram $A B$ is the diameter of the circle. The chords $A C$ and $B D$ intersect at X. The point Y lies on $A B$ such that $X Y$ is perpendicular to $A B$. The point K is the intersection of AD produced and XY produced.

Copy or trace the diagram into your writing booklet.
i. \quad Show that $\angle A K Y=\angle A B D$.

Circle Geometry

Name:
ii. Show that CKDX is a cyclic quadrilateral.
iii. Show that B, C and K are collinear.

Circle Geometry

Name:

24. PT is a common tangent to the circles with touch at T. PA is a tangent to the smaller circle at Q .

i. Prove that $\triangle \mathrm{BTP}$ is similar to $\triangle \mathrm{TAP}$.

Circle Geometry

Name:

ii. Hence show that $\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$.
iii. If $\mathrm{PT}=\mathrm{t}, \mathrm{QA}=\mathrm{a}$ and $\mathrm{QB}=\mathrm{b}$ prove that $\mathrm{t}=\frac{\mathrm{ab}}{\mathrm{a}-\mathrm{b}}$.

Circle Geometry

Name:

\qquad
25. In the diagram, the two circles intersect at A and B. P is a point on one circle. PA and PB produced meet the other circle at M and N respectively. NA produced meets the first circle at Q . PQ and NM produced meet at R. The tangent to the second circle meets PR at T.

Copy or trace the diagram into your writing booklet.
i. Show that QAMR is a cyclic quadrilateral.
ii. \quad Show that $T M=T R$.

Circle Geometry

Name:

\qquad
26. In the diagram, two unequal circles intersect at A and B. The line RS is tangential to the smaller circle at T. The lines TA and TB meet the larger circle at C and D respectively.

Copy or trace the diagram into your writing booklet.
i. State a theorem to explain why $\angle \mathrm{BAT}=\angle \mathrm{BDC}$.
ii. Prove that RS||CD .

Circle Geometry

Name:
27.

In the circle, $\angle \mathrm{ABD}+\angle \mathrm{BCA}=90^{\circ}$, and XY is tangent to the circle at D .
The chords AC and BD intersect at l. (copy or trace the diagram in your writing booklet.)
i. Prove $\angle \mathrm{BCD}=90^{\circ}$ and hence that BD is a diameter of the circle.
ii. Prove that if $\triangle A B C$ is isosceles with $A B=B C$, then $A C|\mid B C$, then $A C| \mid X Y$..

Circle Geometry

Name:

28.

(b)

$A B C$ is a triangle inscribed in a circle L, M and N are the feet of the perpendiculars from P to $A B, A C$ and $B C$ respectively.
i. Copy the diagram.
ii. Show, $\mathrm{P}, \mathrm{M}, \mathrm{A}$ and L are concyclic points.

Circle Geometry

Name:
iii. Show P, C, N and M are concyclic points.
iv. Show that L, M and N are collinear.

Circle Geometry

29. Given that ALCK is a cyclic quadrilateral and H is a point on AK such that $\mathrm{AH}=\mathrm{AL} . \mathrm{LH}$ produced meets the circle again at B and meets AC at E. BC meets AK at D.

i. \quad Prove that $\angle A H L=\angle A C B$.

Circle Geometry

Name:
ii. Hence state why that HECD is a cyclic quadrilateral.
iii. Given are $\mathrm{KC}=\operatorname{arc} \mathrm{CL}$, prove that HC is a diameter of HECD.

Circle Geometry

Name:

30.

The diagram shows two circles intersecting at K and M .
From point A and B on the arc of the larger circle, lines are drawn through M to meet the smaller circle at P and Q respectively.
The lines AB and QP meet at 0 .
Answer on the insert provided.
i. \quad If $\theta=\angle K A B$ give a reason why $\angle K M Q=\theta$.

Circle Geometry

Name:

ii. Prove that AKPO is a cyclic quadrilateral.
iii. Let $\alpha=\angle A K M$. Show that if OBMP is a cyclic quadrilateral, then the points A, K and Q are collinear.

Circle Geometry

Name:

31.

A and B are two points on a circle. Tangents at A and B meet at C .0 A third tangent cuts $C A$ and $C B$ in P and Q respectively, as shown in the diagram.
Show that the perimeter of $\triangle \mathrm{CPQ}$ is constant and independent of PQ .

COACHING

Circle Geometry

Name:

32. In the diagram, A, B and C are three points on a circle.

P is another point on the circle, lyimg on the minor arc BC.
Point L, M and N are the feet of the perpendicular from P to the sides , BC, CA and AB respectively.

i. Explain why P, L, N and B are concyclic.
ii. Explain why P, L, C and M are concyclic.

Circle Geometry

Name:

Let $\angle \mathrm{PLM}=\alpha$,
iii. Show that $\angle A B P=\alpha$.
iv. Hence show that M, L and N are collinear.

Circle Geometry

Name:

33.

In the diagram given, BA is atangent to the circle A at and the secant BD cuts the circle at C. DA and DF are two chords such that FG and AE are perpendicular to DA and DF respectively. copy the diagram.
i. Prove that $\angle \mathrm{ACB}=\angle \mathrm{BAD}$.

Circle Geometry

Name:

ii. Explain why AGEF is a cyclic quadrilateral with diameter AF.
iii. Prove that $\angle A G E=\angle A C D$.

Circle Geometry

Name:

34.

A circle has two chords AB and MN intersecting at F . perpendiculars are drawn to these chords at A and at N intersecting at K. KF produced meets MB at T.
i. Copy or trace the diagram into your writing booklet.

Circle Geometry

Name:
ii. Explain why AKNF is a cyclic quadrilateral.
iii. Prove that KT is perpendicular to MB.

Circle Geometry

Name:

35. ABCD is a cyclic quadrilateral. Chords BE and DF bisect $\angle \mathrm{ABC}$ and $\angle \mathrm{ADC}$ respectively.

Copy the diagram and prove that $E F$ is a diameter of the circle.

