CAPRA

HSC Advanced Maths Exam Booklet: Differentiation, Geometrical Applications of Calculus

Easy:

1. For the graph of $y=f(x)$ shown, state the point at which $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$.
A. A
B. B
C. C
D. D

2. The minimum value of $x^{2}-7 x+10$ is:
A. 2
B. $3 \frac{1}{2}$
C. $-2 \frac{1}{4}$
D. $2 \frac{1}{4}$
3. Differentiate with respect to x :

$$
y=-2\left(1+x^{3}\right)^{4}
$$

Differentiation, Geometrical Applications of Calculus
Name:
4. Differentiate the following with respect to x.

$$
(x+1)^{2}
$$

5. Differentiate with respect to x :

$$
(2 x+1)^{5}
$$

6. $y=f(x)$ is shown on the number plane.

Which of the following statements is true?
A. $y=f(x)$ is decreasing and concave up.
B. $y=f(x)$ is decreasing and concave down.
C. $y=f(x)$ is increasing and concave up.

D. $y=f(x)$ is increasing and concave down.
7. Differentiate $\frac{x^{2}}{5 x+1}$
8. Consider the function defined by $f(x)=x^{3}-6 x^{2}+9 x+2$.
A. Find $f^{\prime}(x)$.
B. Find the coordinates of the two stationary points.
C. Determine the nature of the stationary points.
D. Sketch the curve $y=f(x)$ for $0 \leq x \leq 4$ clearly labeling the stationary points. (2)
9. Differentiate with respect to x.
A. $\frac{1}{2 x^{4}}$
B. $\frac{\log x}{x}$
C. $\cos ^{2} 3 x$
10. The graph shows the derivative, y^{\prime}, of a function $y=f(x)$

A. State the values(s) of x where $y=f(x)$ is increasing.
B. State the values(s) of x where $y=f(x)$ has a point of inflexion.

Differentiation, Geometrical Applications of Calculus Name:
C. State the values(s) of x where $y=f(x)$ has a minimum turning point.
D. If $f(0)=1$ sketch the graph of $y=f(x)$.

Differentiation, Geometrical Applications of Calculus

Name:

Medium:

11. A designer T-shirt manufacture finds that the total cost, \$C to make $x \mathrm{~T}$-shirts is $C=4000+\frac{3 x}{20}+\frac{x^{2}}{1000}$ and the selling price $\$ \mathrm{E}$ for each T -shirt sold is $30-\frac{x}{200}$. Assuming all but 30 T -shirts are sold:
A. Show that the total sales, $\$ \mathrm{~S}$ is given by $S=-\frac{x^{2}}{200}+\frac{603 x}{20}-900$
B. Show that the profit, $\$ P$ is given by $P=-\frac{3}{200} x^{2}+30 x-4900$

Differentiation, Geometrical Applications of Calculus
Name:
C. Find the maximum profit and show that the price for selling each T-shirt must be $\$ 17.50$ to achieve this maximum profit.
12. Consider the function $f(x)=x^{2}\left(\frac{1}{3} x-1\right)$
A. Show that $f^{\prime(x)}=x^{2}-2 x$
B. Find any turning points and determine their nature.

Differentiation, Geometrical Applications of Calculus
Name:
C. Find any points of inflexion.
D. Sketch the curve in the domain $-1 \leq x \leq 3$
13. On the compass diagram below, Mary is at position $\mathrm{A}, 25 \mathrm{~km}$ due north of position B. John is at B, Mary walks towards B at $4 \mathrm{~km} / \mathrm{h}$. John moves due west at $6 \mathrm{~km} / \mathrm{h}$.

A. Show that the distance between Mary and John after t hours is given by: $d^{2}=52 t^{2}-200 t+625$

Differentiation, Geometrical Applications of Calculus
Name:
B. Letting $L=d^{2}$ find the time when L is minimum.
C. Hence find the minimum distance between john and Mary correct to the nearest kilometer.
14. Consider the curve $y=2+3 x-x^{2}$
A. Find $\frac{d y}{d x}$.
B. Locate any stationary points and determine their nature.
C. For what values of x is the curve concave up?
D. Sketch the curve for $-2 \leq x \leq 2$.

Differentiation, Geometrical Applications of Calculus
Name:
15. The diagram below shows the graph of a gradient function $y=f^{\prime}(x)$.

A. Write down the values of x where the curve is stationary.
B. For what value of x will the curve have a maximum turning point?

Differentiation, Geometrical Applications of Calculus
Name:
C. Copy or trace the diagram into your writing booklet. Draw a possible curve for $=f(x)$, clearly showing what is happening to the curve as the values of x increase indefinitely.
16. $A B C D E$ is a pentagon with perimeter 30 cm . The pentagon is constructed with an equilateral triangle $\triangle A B E$ joining a rectangle $B C D E$.

A. Show that $y=\frac{30-3 x}{2}$.

Differentiation, Geometrical Applications of Calculus
Name:
B. Show that the area of $\triangle A B E$ is $y=\frac{\sqrt{3 x^{2}}}{4} \mathrm{~cm}^{2}$
C. Hence show that the area of the pentagon is $15 x+\frac{(\sqrt{3}-6) x^{2}}{4} \mathrm{~cm}^{2}$.
D. Find the exact value of x for which the area of the pentagon will be a maximum. Justify your solution.

Differentiation, Geometrical Applications of Calculus
Name:
17. A rectangular sheet of metal measures 200 cm by 100 cm . Four equal squares with side lengths $x \mathrm{~cm}$ are cut out of all the corners and then the sides of the sheet are turned up to form an open rectangular box.
A. Draw a diagram representing this information.
B. Show that the volume of the box can be represented by the equation $V=4 x^{3}-600 x^{2}+20000 x$
C. Find the value of x such that the volume of the tool box is a maximum.
(Answer to the nearest cm)

Differentiation, Geometrical Applications of Calculus
Name:
18. Consider the curve $y=x^{3}+3 x^{2}-9 x-2$
A. Find any stationary points and determine their nature.
B. Find the coordinates of any point(s) of inflexion.
C. Sketch the curve labelling the stationary points, point of inflexion and y intercept.

Differentiation, Geometrical Applications of Calculus
Name:
19. A 30 cm length of wire is used to make two frames. The wire is to be cut into two parts. One part is bent into a square of side $x \mathrm{Cm}$ and the remaining length is bent into a circle of radius rcm .

A. The circumference of a circle, C , is found using the formula $C=2 \pi r$ Show that the expression for r in terms of x is $r=\frac{15-2 x}{\pi}$

Differentiation, Geometrical Applications of Calculus
Name:
B. Show that the combined area, A, of the two shapes can be written as

$$
A=\frac{(4+\pi) x^{2}-60 x+225}{\pi}
$$

C. Find the value of x for which the combined area of the two frames be minimised. Give your answer correct to 2 significant figures.

Differentiation, Geometrical Applications of Calculus
Name:
20. A rectangular sheet of cardboard measures 12 cm by 9 cm . From two corners, squares of $x \mathrm{~cm}$ are removed as Shown. is folded along the dotted to form a tray as shown.

FIGURE NOT TO SCALE
A. Show that the volume, $V c m^{3}$, of the tray is given by $V=2 x^{3}-33 x^{2}+$ 108x.
B. Find the maximum volume of tray
21. Sketch the curve that has the following properties.
A. $f(2)=1$
B. $f^{\prime}(2)=0$
C. $f^{\prime \prime}(2)=0$
D. $f^{\prime(x)} \geq 0$ for all real x.

Differentiation, Geometrical Applications of Calculus
Name:
22. The intensity I produced by a light of power W at a distance x metres from the light is given by $=\frac{W}{x^{2}}$. Two lights L_{1} and L_{2}, of power W and $2 W$ respectively, are positioned 30 metres apart.

A. Write down an expression for the combined intensity I_{c} of L_{1} and L_{2} at a point P which is x metres from L_{1}, as shown in the diagram.
B. Find $\frac{d I_{e}}{d x}$.

Differentiation, Geometrical Applications of Calculus
Name:
C. Find the distance $P L_{1}$, correct to the nearest centimetre, so that combined intensity of L_{1} and L_{2} is at its minimum.
23. The velocity of a train increases from 0 to V at a constant rate a. velocity then remains constant at V for a certain time. After this time the velocity decreases to 0 at a rate b. Given that the total distance travelled by train is s and the time for the Journey is T.
A. Draw a velocity-time graph for the above information,

Differentiation, Geometrical Applications of Calculus
B. Show that the time (T) for the journey is given by $T=\frac{s}{V}+\frac{1}{2} V\left(\frac{1}{a}+\frac{1}{b}\right)$.
C. When a, b and s are find the speed that will minimize the time for the journey

Differentiation, Geometrical Applications of Calculus
Name: \qquad
24. A circus marquee is supported by a center pole, and secured by the rope $A B C D$. George, a curious monkey, wants to know how quickly he can climb up and down the marquee along the rope $A B C D$.

A. If $B E=C F=4$ metres and $A D=7$ meter, show that $B C=7-\frac{8}{\tan \theta}$

Differentiation, Geometrical Applications of Calculus
Name:
B. Hence show that the total time (t) needed for George to climb up and down the marquee, in minutes, is given by: $t=\frac{7}{4}+\frac{4-2 \cos \theta}{\sin \theta}$
C. Given that $0<\theta<\frac{\pi}{2}$, find value of θ for which the time taken by George to climb up and down the marquee is a minimum.

Differentiation, Geometrical Applications of Calculus
Name:
25. An open cylindrical water tank has base radius x meters and height h meters. Each square meter of base cost a dollars to manufacture and each square metre of the curved surface costs b dollars, where a and b are constants. The combined cost of the base and curved surface is c dollars.
A. Find c in the term of a, b, x and h (Note that the curved surface has area $2 \pi x h$.)
B. Show that the volume V of the tank in cubic metres is given by $V=\frac{x}{2 b}\left(c-\pi a x^{2}\right)$.

Differentiation, Geometrical Applications of Calculus
Name:
C. If x can vary, prove that V is maximised when the cost of the base is $\frac{c}{3}$ dollars.
26. Let f and g be functions where $f^{\prime}(2)=2, g(2)=1, f^{\prime}(1)=3$ and $g^{\prime}(2)=-2$

What is the gradient of the tangent to the curve $y=f[g(x)]$ at the point where $x=2$?
A. 6
B. 3
C. 2
D. -6

Differentiation, Geometrical Applications of Calculus
Name:
27. The diagram below shows a design to be used on a new brand of jam. The design consists of three circular sectors each of radius $r \mathrm{~cm}$. The angle of two of the sectors is θ radian and the angle of the third sector is 3θ radian as shown.

NOT TO SCALE

Given that the area of the design is $25 \mathrm{~cm}^{2}$,
A. Show that $=\frac{10}{r^{2}}$.
B. Find the external perimeter of the design, P, in terms of r.

Differentiation, Geometrical Applications of Calculus
Name:
C. Given that r can vary, find the value of r for which P is minimum.
28. A rectangular beam of width $w \mathrm{~cm}$ and depth $d \mathrm{~cm}$ is cut from a cylindrical pine log as shown.
The diameter of the cross-section of the \log (and hence the diagonal of the cross-section of the beam is 15 cm). The strength S of the beam is propotional to the product of its width and the square of its depth, so that $S=k d^{2} w$.

A. Show that $S=k\left(225 w-w^{3}\right)$.

Differentiation, Geometrical Applications of Calculus
Name:
B. Find numerically the dimensions that will maximize the strength of the beam. Justify your answer.
C. Find the strength S of the beam if its cross sectional area is a square with diagonal 15 cm .
D. Express as a percentage, how much stronger will beam of strength be in comparison to the square beam in part iii to the nearest \%.
29. A lot of land has the form of a right triangle, with perpendicular sides 60 and 80 meters long.

A. Show that $r=\frac{3}{4} x$ and $s=\frac{4}{3} x$
B. Show that $y=100-\frac{25}{12} x$

Differentiation, Geometrical Applications of Calculus
Name:
C. Find the length and width of the largest rectangular building that can be erected facing the hypotenuse of the triangle.

Differentiation, Geometrical Applications of Calculus
Name:

Hard:

30. An isosceles trapezium ABCD is drawn with its vertices on a semi-circle center 0 and diameter 20 cm (see diagram). OE is the altitude of ABCD .

A. Prove that $\triangle B O E=\triangle C O E$
B. Hence of otherwise, show that the area of the trapezium ABCD is given by:
$A=\frac{1}{4}(x+20) \sqrt{400-x^{2}}$ Where x is the length of BC
C. Hence find the length of BC so that the area of the trapezium ABCD is a maximum.
31. Evaluate: $\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}$

Differentiation, Geometrical Applications of Calculus
Name:
32. A function is defined by the following properties: $y=0$ when $x=1 ; \frac{d y}{d x}=0$ when $x=-3,1$ and 5 ; and $\frac{d^{2} y}{d x^{2}}>0$ for $x \leq-1$ and $1<x<3$. Sketch a possible graph of the function.

Differentiation, Geometrical Applications of Calculus
Name:
33. An isosceles triangle $A B C$ with $A B=A C$ is inscribed in a circle centre O and of radius R units.

Given that $O M=x$ units, $O M \perp B C$ and M is the midpoint of $B C$,

A. Show that the area of $\triangle A B C, S$ square units, is given by: $S=(R+$ x) $\sqrt{R^{2}-x^{2}}$
B. Hence show that the triangle with maximum area is an equilateral triangle.

Differentiation, Geometrical Applications of Calculus
Name:
34. When a ship is travelling at a speed of $v \mathrm{~km} / \mathrm{hr}$, its rate of consumption of fuel in tonnes per hours given by $125+0.004 v^{3}$.
A. Show that on a voyage of 5000 km at a speed 0 f $v \mathrm{~km} / \mathrm{hr}$ the formula for the total fuel used, T tonnes, is given by: $T=\frac{625000}{v}+20 v^{2}$
B. Hence find the speed for the greatest fuel economy and the amount of fuel used at this speed. (Justify your answer.)
35.
A. Justify the graph of $f(x)=x-\frac{1}{x^{2}}$ is always concave down.
B. Sketch the graph $(x)=x-\frac{1}{x^{2}}$, showing all intercept(s) and stationary point(s).

Differentiation, Geometrical Applications of Calculus
Name:
36. The diagram shows a 16 cm high Wine glass that is being filled with water at a constant rate (by volume). Let $y=f(t)$ be the depth of the liquid in the glass as a function of time.

A. Write down the approximate depth y_{1}, at which $\frac{d y}{d t}$ is a minimum.

Differentiation, Geometrical Applications of Calculus
Name:
B. Write down the approximate depth y_{2}, at which $\frac{d y}{d t}$ is a maximum.
C. If the glass takes 8 seconds to fill, graph $y=f(t)$ and identify any points on your graph where the concavity changes.

Differentiation, Geometrical Applications of Calculus
Name:
37. Find $\lim _{h \rightarrow 0}\left(\frac{4^{h}-1}{2^{h}-1}\right)$
38.
A. Show that $\frac{d s_{\infty}}{d x}=\frac{-x^{2}+2 x+1}{(1-x)^{2}}$
B. Find the minimum value of the sum to infinity. Justify your answer.

Differentiation, Geometrical Applications of Calculus
Name:
39. At a music concert two speaker towers are placed 75 metres apart. The intensity of sound produced by a speaker tower of power P at a distance x metres from the tower is given by $I=\frac{4 P}{\pi r^{2}}$.

The speakers in S_{1}, have a power output of P but the older speakers in tower S_{2} produce 25% less power. Rebecca R stands in between the two towers and x metres from tower S_{1} as shown in the diagram above.
A. Show that the sound intensity produced by speaker tower S_{2} at point R is $I=\frac{3 P}{\pi(75-x)^{2}}$.
Given that the total sound intensity from both speaker towers I_{T} at point R is

$$
I=\frac{4 P}{\pi r^{2}}+\frac{3 P}{\pi(75-x)^{2}},
$$

Differentiation, Geometrical Applications of Calculus
Name:
B. Find $\frac{d I_{T}}{d x}$.
C. Hence find the value of x which minimizes the sound intensity So that Rebecca knows where best to stand to enjoy the concert. Give your answer to three significant figures.

Differentiation, Geometrical Applications of Calculus
Name:
40. The derivative of $y=x^{x}$ is
A. $x \cdot x^{x-1}$
B. $\left(1+\log _{\mathrm{e}} x\right) \cdot x^{x}$
C. $2 x \cdot x^{x}$
D. $\left(x \log _{\mathrm{e}} x\right) \cdot x^{x}$
41. A rectangular piece of paper is 30 centimetres high and 15 centimetres wide. The lower right-hand corner is folded over so as to reach the leftmost edge of the paper. Let x be the horizontal distance folded and y be the vertical distance folded as shown in the diagram.

A. By considering the areas of three triangles and trapezium that make up the total area of the paper, show

$$
y=\frac{\sqrt[x]{15(2 x-15)}}{2 x-15}
$$

B. Show that the crease, C. is found by the expression

$$
C=\sqrt{\frac{2 x^{3}}{2 x-15}}
$$

C. Hence, find the minimum length of C.

Name:
42. The diagram shows a triangular piece of land ABC with dimensions $A B=c$ metres, $A C=b$ metres and $B C=a$ metres where $a \leq b \leq c$.
The owner of the land wants to build a straight fence to divide the land into two pieces of equal area. Let S and T be the points O n $A B$ and $A C$ respectively so that $S T$ divides the land into two equal areas. Let $A S=x$ metres, $A T=y$ metres and $S T=z$ metres.

A. Show that $x y=\frac{1}{2} b c$.
B. Use the cosine rule in triangle AST to show that $z^{2}=\mathrm{x}^{2}+\frac{\mathrm{b}^{2} c^{2}}{4 \mathrm{x}^{2}}-b c \cos A$.

Differentiation, Geometrical Applications of Calculus
Name:
C. Show that the value of z^{2} in the equation in part (ii) is a minimum when $x=\sqrt{\frac{b c}{2}}$.
D. Show that the minimum length of the fence is $\sqrt{\frac{(p-2 b)(p-2 c)}{2}}$ metres, where $P=a+b+c$. (You may assume that the value of x given in part (iii) is feasible).

Name:
43. Two corridors meet at right angles. One has a width of A metres, and the other has a width of B metres. Mario the plumber wants to find the length of longest pipe, L that he can carry horizontally around the corner as seen in the diagram below. Assume that the pipe has negligible diameter.

A. Show that $L=A \sec \theta+B \operatorname{cosec} \theta$.
B. Explain why the length of the pipe, L , needs to be minimized in order to obtain the length of longest pipe that can be carried around the corner.

Differentiation, Geometrical Applications of Calculus
Name:
C. Hence show that When $\tan \theta=\sqrt[3]{\frac{B}{A}}$ the solution will be minimized. (You do NOT need to test to show that the solution will give a minimum length).
D. Hence using the result in part (a), show that the length of the largest pipe that can be carried around the corner is $L=\left(A^{\frac{2}{3}}+B^{\frac{2}{3}}\right)^{\frac{2}{2}}$

Differentiation, Geometrical Applications of Calculus
Name:
44. The diagram below shows two towns A and B that are 16 km apart, and each at a distance of $d \mathrm{~km}$ from a water well at W.
Let M be the midpoint of $A B, P$ be a point on the line segment $M W$, and $\theta=\angle A P M=\angle B P M$.
The two towns are to be supplied with water from W, via three straight water pipes: $P W, P A$ and $P B$ as shown below.

A. Show that the total length of the water pipe L is given by $L=8 f(\theta)+$ $\sqrt{d^{2}-64}$
Where, $f(\theta)$ is given in part (b) above.

Differentiation, Geometrical Applications of Calculus
Name:
B. Find the minimum value L if $d=20$.
C. If $d=9$, show that the minimum value of L cannot be found by using the same methods as used in part (ii).
Explain briefly how to find the minimum value of L in this case.

Differentiation, Geometrical Applications of Calculus
Name:
45. The diagram below shows a straight rod $A B$ of length 8 m hinged to the ground at A. $C D$ is a rod of 1 m .
The end C is free to slide along $A B$ while the end is touching the ground floor such that $C D$ is perpendicular to the ground.

Let $D E=x \mathrm{~m}$ and $\angle B A E=\theta$, where $\frac{1}{8}<\sin \theta<1$.
A. Express x in terms of θ.
B. Find the maximum value of x as θ varies.

Differentiation, Geometrical Applications of Calculus
Name:
C. Let M be the area of trapezium $C D E B$. Show that
$M=\left(\frac{1+8 \sin \theta}{2}\right)(8 \cos \theta-\cot \theta)$
D. Does M attain a maximum when x reaches its maximum? Justify your answer.

Name:
\qquad
46. An irrigation channel has a cross-section in the shape of a trapezium as shown in the diagram. The bottom and sides of the trapezium are 4 metres long.
Suppose that the sides of the channel make an angle of θ with the horizontal where $\theta \leq \frac{\pi}{2}$.

A. Show that the cross-sectional area is given by $A=16(\sin \theta+\cos \theta-1)$.
B. Show that $\frac{d A}{\mathrm{~d} \theta}=16\left(2 \cos ^{2} \theta+\cos \theta-1\right)$

Differentiation, Geometrical Applications of Calculus Name:
C. Hence, show that the maximum cross-sectional area occurs when $\theta=\frac{\pi}{3}$.
D. Hence, find the maximum area of the irrigation channel correct to the nearest square metre.

Differentiation, Geometrical Applications of Calculus
Name:
47.

The diagram above that the distance between a boy's home H and his school S is 6 km . A canal $A B C D$ is 1 km from both his home and winter canal is frozen, so he take an alternate route $H B C S$, walking $H B$, skating $B C$ and walking $C S$. His walking is $4 \mathrm{~km} / \mathrm{h}$ and his skating is $12 \mathrm{~km} / \mathrm{h}$. Let $\angle A H B=\angle D S C=\theta$.
A. Show that the time taken for this alternate route is $T=\frac{1}{2 \cos \theta}+\frac{1}{2}-\frac{\tan \theta}{6}$.
B. Find, to the nearest minute, the value of θ which minimizes the time taken for the journey to school.

Differentiation, Geometrical Applications of Calculus
Name:
48. The diagram shows the graph of the function $y=\ln \left(x^{2}\right),(x>0)$.

The points $P(1,0), Q(e, 2)$ and $R\left(t, \ln t^{2}\right)$ all lie on the curve.
The area of $\triangle P Q R$ is maximum when the tangent at R is parallel to the line through P and Q.

A. Find gradient of the line through P and Q.
B. Find the value of t that gives the maximum area for $\triangle P Q R$.

Differentiation, Geometrical Applications of Calculus
Name:
C. Hence find the maximum area of $\triangle P Q R$
49. If the straight line $y=m x$ is a tangent to the curve $=e^{\frac{x}{2}}$, find the exact value of m. Clearly show your working.

Differentiation, Geometrical Applications of Calculus
Name:
50. A cable link is to be constructed between two points L and N, which are situated on opposite banks of a river of width $I \mathrm{~km}$. L lies 3 km upstream from N. It costs three times as much to lay a length of cable underwater as it does to lay the same length overland. The following diagram is a sketch of the cables where θ is the angle $N M$ makes with the direct route across the river.

Not to scale
A. \quad Show $M N=\sec \theta$ and $M R=\tan \theta$.

Differentiation, Geometrical Applications of Calculus
Name:
B. If segment $L M$ costs c dollars per km, show the total cost (T) of laying the cable from L to M to N is given by: $T=3 c-c \tan \theta+3 c \sec \theta$
C. At what angle, θ, should the cable cross the river in order to minimise the total cost of laying the cable?

